Voltage-dependent enhancement of electrical coupling by a subthreshold sodium current.
نویسندگان
چکیده
Voltage-dependent changes in electrical coupling are often attributed to a direct effect on the properties of gap junction channels. Identifiable auditory afferents terminate as mixed (electrical and chemical) synapses on the distal portion of the lateral dendrite of the goldfish Mauthner cells, a pair of large reticulospinal neurons involved in the organization of sensory-evoked escape responses. At these afferents, the amplitude of the coupling potential produced by the retrograde spread of signals from the postsynaptic Mauthner cell is dramatically enhanced by depolarization of the presynaptic terminal. We demonstrate here that this voltage-dependent enhancement of electrical coupling does not represent a property of the junctions themselves but the activation of a subthreshold sodium current present at presynaptic terminals that acts to amplify the synaptic response. We also provide evidence that this amplification operates under physiological conditions, enhancing synaptic communication from the Mauthner cells to the auditory afferents where electrical and geometrical properties of the coupled cells are unfavorable for retrograde transmission. Retrograde electrical communication at these afferents may play an important functional role by promoting cooperativity between afferents and enhancing transmitter release. Thus, the efficacy of an electrical synapse can be dynamically modulated in a voltage-dependent manner by properties of the nonjunctional membrane. Finally, asymmetric amplification of electrical coupling by intrinsic membrane properties, as at the synapses between auditory afferents and the Mauthner cell, may ensure efficient communication between neuronal processes of dissimilar size and shape, promoting neuronal synchronization.
منابع مشابه
Microelectrode demonstration of Wedensky facilitation in canine cardiac Purkinje fibers.
Microelectrode techniques were used to examine changes in excitability of canine Purkinje fibers at sites distal to complete conduction block. Immediately distal to a site where impulse propagation failed, it was possible to record subthreshold depolarizations. Intracellular stimulation of the Purkinje cells exhibiting these subthreshold responses with constant-current pulses of subthreshold in...
متن کاملState-dependent enhancement of subthreshold A-type potassium current by 4-aminopyridine in tuberomammillary nucleus neurons.
A-type potassium current (I(A)) both activates and inactivates at subthreshold voltages. We asked whether there is steady-state I(A) at subthreshold voltages, using dissociated mouse tuberomammillary nucleus neurons, pacemaking neurons with large I(A) currents in which subthreshold I(A) might regulate firing frequency. With slow depolarizing voltage ramps (20 mV/s), there was no discernible com...
متن کاملOptical measurement of cell-to-cell coupling in intact heart using subthreshold electrical stimulation.
Electrical coupling between myocytes plays a critical role in propagation, repolarization, and arrhythmias. On the basis of predictions from cable theory, we hypothesized that the cardiac space constant (lambda) measured from the decay of subthreshold transmembrane potential (ST-Vm) in space would provide an index of regional cell-to-cell coupling in the intact heart. With the use of voltage-se...
متن کاملNovel attributes of steep-slope staggered type heterojunction p-channel electron-hole bilayer tunnel field effect transistor
In this paper, the electrical characteristics and sensitivity analysis of staggered type p-channel heterojunction electron-hole bilayer tunnel field effect transistor (HJ-EHBTFET) are thoroughly investigated via simulation study. The minimum lattice mismatch between InAs/GaAs0.1Sb0.9 layers besides low carrier effective mass of materials provides high probability ...
متن کاملActivation of Ih and TTX-sensitive sodium current at subthreshold voltages during CA1 pyramidal neuron firing.
We used dynamic clamp and action potential clamp techniques to explore how currents carried by tetrodotoxin-sensitive sodium channels and HCN channels (Ih) regulate the behavior of CA1 pyramidal neurons at resting and subthreshold voltages. Recording from rat CA1 pyramidal neurons in hippocampal slices, we found that the apparent input resistance and membrane time constant were strongly affecte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 16 شماره
صفحات -
تاریخ انتشار 2004